Hyperfinite graphings, part III

Marcin Sabok

McGill University

Winter School in Abstract Analysis 2022

・ロト・日本・日本・日本・日本・日本

Marcin Sabok Hyperfinite graphings McGill University

Circuits	Improving a	perfect	
00000			

Theorem (Bowen–Kun–S.)

Any bipartite hyperfinite a.e. one-ended regular graphing admits a **measurable perfect matching**.

Marcin Sabok Hyperfinite graphings McGill University

< 口 > < 同 >

< ∃ >

Circuits Improving a fractional perfect matching 0000 0000	Random small distortions	Applications 000000000000000000000000000000000000
---	--------------------------	--

Recall

▲□▶▲圖▶▲圖▶▲圖▶ = のへの

Marcin Sabok Hyperfinite graphings McGill University

Circuits	Improving		perfect
00000			

Recall

Structure of extreme points

If φ is an **extreme point** of C_G , then for a.e. edge $e \in E(G)$ we have

$$\varphi(e) \in \{0,\frac{1}{2},1\}$$

and the set of edges on which $\varphi = \frac{1}{2}$ is a disjoint union of lines, which we denote $L(\varphi)$.

McGill University

< □ > < 同 > < 回 > < Ξ > < Ξ

Circuits	Improving a		perfect	
00000				

Recall

Structure of extreme points

If φ is an **extreme point** of C_G , then for a.e. edge $e \in E(G)$ we have

$$\varphi(e) \in \{0, \frac{1}{2}, 1\}$$

and the set of edges on which $\varphi = \frac{1}{2}$ is a disjoint union of lines, which we denote $L(\varphi)$.

Connected toasts

Any hyperfinite a.e. one-ended regular graphing admits a **connected toast**.

McGill University

イロト イポト イヨト イヨ

Circuits	
00000	

Lemma

Suppose G is hyperfinite and one-ended and $L \subseteq G$ is a **family of disjoint lines of positive measure**. For every K there exists are Borel families C_1, \ldots, C_K , each consisting of **pariwise edge-disjoint cycles** such that

- ► each edge in G \ L is covered by at most one of C₁ ∪ ... ∪ C_K,
- ▶ at least half of the edges in *L* are **covered by all** $C_1 \cap \ldots \cap C_K$

Image: A math a math

Proof

The proof uses a connected toast to inscribe cycles into bigger and bigger elements of the toast.

McGill University

Circuits	
00000	

Claim

Any regular graphing admits a measurable fractional perfect matching τ which is positive on all its edges.

Marcin Sabok Hyperfinite graphings McGill University

Circuits	
00000	

Random small distortions

Claim

Any regular graphing admits a measurable fractional perfect matching τ which is positive on all its edges.

Proof

Put

$$\tau(e) = \frac{1}{d},$$

where d is the degree of G.

< 口 > < 同 >

Marcin Sabok Hyperfinite graphings McGill University

Cir		
oc	0000	

Lemma

Given an extreme point φ of C_G such that $\mu(L(\varphi)) > 0$ there exists an extreme point ψ of C_G such that

 $\mu(L(\psi)) < \mu(L(\varphi)).$

Marcin Sabok Hyperfinite graphings McGill University

< □ > < 同 > < Ξ > <</p>

cuits
000

Lemma

Given an extreme point φ of C_G such that $\mu(L(\varphi)) > 0$ there exists an extreme point ψ of C_G such that

 $\mu(L(\psi)) < \mu(L(\varphi)).$

Improvement measure

To estimate $\mu(L(\psi))$ for ψ in C_G we will use the fact that

$$\mu(L(\psi)) = 1 - 2 \int_{E(G)} |\psi(e) - \frac{1}{2}| d\mu$$

Marcin Sabok Hyperfinite graphings McGill University

< □ > < 同 > < 回 > < Ξ > < Ξ

Cir		
oc	000	

Random small distortions

Proof of the lemma

Given an extreme point φ of C_G such that $\mu(L(\varphi)) > 0$ we will find an extreme point ψ of C_G such that

$$\int_{E(G)} |\varphi(e) - \frac{1}{2}|d\mu < \int_{E(G)} |\psi(e) - \frac{1}{2}|d\mu.$$

Marcin Sabok Hyperfinite graphings

イロト イロト イヨト イヨト

Circuits	
00000	

Random small distortions

Proof of the lemma

Given an extreme point φ of C_G such that $\mu(L(\varphi)) > 0$ we will find an extreme point ψ of C_G such that

$$\int_{E(G)} |\varphi(e) - \frac{1}{2}| d\mu < \int_{E(G)} |\psi(e) - \frac{1}{2}| d\mu.$$

Proof

Choose K very big and λ very small and consider

$$\rho = (1 - \lambda)\varphi + \lambda\tau$$

where $\tau = \frac{1}{d}$ as in the previous claim.

Marcin Sabok Hyperfinite graphings McGill University

イロト イロト イヨト イヨ

Circuits 00000	Improving a fractional perfect matching 0000	Random small distortions	Applications

Note that ρ is still a fractional perfect matching such that

 $0 < \rho(e) < 1$

on every edge. It does not lie on the extreme boundary of C_G , and it can be distorted slightly at every edge and still be in C_G .

< □ > < 同 > < 回 > < Ξ > < Ξ

McGill University

Choose a small $\varepsilon < \lambda$.

Circuits	Improving a fractional perfect matching	Random small distortion
	0000	

Circuits

Use the previous lemma to find families of cycles C_1, \ldots, C_K for $L = L(\varphi)$.

McGill University

Circuits	Imp
00000	000

メロト メロト メヨト メヨ

McGill University

Circuits

Use the previous lemma to find families of cycles C_1, \ldots, C_K for $L = L(\varphi)$.

Alternating circuits

For each $i \leq K$ consider the function $\zeta_i : \bigcup C_i \to \{\pm \varepsilon\}$ which **alternates** $\pm \varepsilon$ on the edges of (necessarily even) cycles in C_i

Circuits	Impr
00000	000

Circuits

Use the previous lemma to find families of cycles C_1,\ldots,C_K for $L=L(\varphi).$

Alternating circuits

For each $i \leq K$ consider the function $\zeta_i : \bigcup C_i \to \{\pm \varepsilon\}$ which **alternates** $\pm \varepsilon$ on the edges of (necessarily even) cycles in C_i

McGill University

Cir		
00	000	

Random circuits

Consider independent identically distributed (iid) random variables:

 $Z_1(t), Z_2(t) \dots \in \{-1, 1\}.$

(for example for $t \in \{-1,1\}^{\mathbb{N}}$ let $Z_i(t) = t(i)$).

Marcin Sabok Hyperfinite graphings McGill University

イロト イロト イヨト イヨ

Circuits	Imp
00000	000

Random circuits

Consider independent identically distributed (iid) random variables:

$$Z_1(t), Z_2(t) \dots \in \{-1, 1\}.$$

(for example for $t \in \{-1,1\}^{\mathbb{N}}$ let $Z_i(t) = t(i)$).

For every t consider the following distorted fractional perfect matching

$$\rho_t = \rho + \sum_{i=1}^{K} Z_i(t)\zeta_i$$

Marcin Sabok Hyperfinite graphings McGill University

< ロ > < 回 > < 回 > < 回 > < 回 >

Circuits	Improving a	a fractional	perfect	

Random small distortions

Theorem (Berry–Esseen)

If $Y_1, Y_2 \ldots$ are iid with $\mathbb{E}Y_i = 0$, then

$$\lim_{k \to \infty} \mathbb{E} |\sum_{i=1}^{k} Y_i| / \sqrt{k} = \mathbb{E} |N| > 0,$$

where N has **normal distribution**.

Marcin Sabok Hyperfinite graphings McGill University

С	ircı	

McGill University

Consequence

The latter implies that given K large enough, for an edge $e \in L(\varphi)$ we have

$$\mathbb{E}_t |\rho_t(e) - \frac{1}{2}| = \varepsilon \cdot \Omega(\sqrt{K})$$

Circuits	
00000	

Consequence

The latter implies that given K large enough, for an edge $e \in L(\varphi)$ we have

$$\mathbb{E}_t |\rho_t(e) - \frac{1}{2}| = \varepsilon \cdot \Omega(\sqrt{K})$$

On the other hand, for an edge $e \in G \setminus L(\varphi)$ we have $\varphi(e) \in \{0, 1\}$ and the distortion $|\rho_t(e) - \varphi(e)|$ is small

$$|\rho_t(e) - \frac{1}{2}| > \frac{1}{2} - 2\lambda$$

Marcin Sabok Hyperfinite graphings McGill University

• • • • • • • • • • • •

Circuits	Improving a fractional perfect matching	

Expected distortion

By Fubini's theorem, we get that in expected value:

$$\int_{E(G)} |\varphi(e) - \frac{1}{2}| d\mu < \mathbb{E}_t \int_{E(G)} |\rho_{\mathbf{t}}(e) - \frac{1}{2}| d\mu.$$

Marcin Sabok Hyperfinite graphings McGill University

Circuits	Improving a	perfect	matching

Expected distortion

By Fubini's theorem, we get that in expected value:

$$\int_{E(G)} |\varphi(e) - \frac{1}{2}| d\mu < \mathbb{E}_t \int_{E(G)} |\rho_{\mathbf{t}}(e) - \frac{1}{2}| d\mu.$$

Find a witness

Since this is a convex condition, we can find t_0 such that

$$\int_{E(G)} |\varphi(e) - \frac{1}{2}| d\mu < \int_{E(G)} |\rho_{\mathbf{t}_0}(e) - \frac{1}{2}| d\mu.$$

Marcin Sabok Hyperfinite graphings McGill University

Image: A math a math

Ci	rcu		
	20	00	

mproving a fractional perfect matching

Random small distortions

Theorem (Choquet–Bishop–de Leeuw)

Each element of a compact convex set is a **barycenter of a probability measure** supported by the set of extreme points.

McGill University

Circuits	Improving a fractional perfect matching	Random small distortions	Applications
00000	0000	00000●0	000000000000000000000000000000000000

Applying this to ρ_{t_0} , we can find an extreme point ψ which satisfies the same property as ρ_{t_0} , i.e.

$$\int_{E(G)}|\varphi(e)-\frac{1}{2}|d\mu<\int_{E(G)}|\psi(e)-\frac{1}{2}|d\mu.$$

メロト メロト メヨト メヨ

McGill University

Circuits	Improving a fractional perfect matching	Random small distortions	Applications
00000	0000	00000●0	

Applying this to ρ_{t_0} , we can find an extreme point ψ which satisfies the same property as ρ_{t_0} , i.e.

$$\int_{E(G)}|\varphi(e)-\frac{1}{2}|d\mu<\int_{E(G)}|\psi(e)-\frac{1}{2}|d\mu.$$

This implies that $\mu(L(\psi)) < \mu(L(\varphi))$ and ends the proof of the lemma.

メロト メロト メヨト メヨ

McGill University

Cir		
00	0000	

Limit construction

To get a perfect matching, we apply the above lemma a countable number of times.

McGill University

Improving		perfect	

< □ > < 同 > < 回 > < Ξ > < Ξ

McGill University

Limit construction

To get a perfect matching, we apply the above lemma a countable number of times.

For countable ordinals α we construct extreme points φ_{α} of the set of fractional perfect matchings such that

 $\mu(L(\varphi_{\alpha}))$ decrease

and the sequence is a.e. convergent

Improving		perfect	match

< □ > < 同 > < 回 > < Ξ > < Ξ

McGill University

Limit construction

To get a perfect matching, we apply the above lemma a countable number of times.

For countable ordinals α we construct extreme points φ_{α} of the set of fractional perfect matchings such that

 $\mu(L(\varphi_{\alpha}))$ decrease

and the sequence is a.e. convergent

After countably many times we get $\mu(L(\varphi_{\alpha})) = 0$ and φ_{α} is then a measurable perfect matching.

Circuits	Improvi

More general version

The proof does not use regularity in an essential way and also proves the following slightly more general version.

Marcin Sabok Hyperfinite graphings McGill University

Image: A math a math

Circuits	Improving a	

More general version

The proof does not use regularity in an essential way and also proves the following slightly more general version.

Therem (BKS)

If a bipartite hyperfinite one-ended graphing admits a **measurable fractional perfect matching which is everywhere positive**, then it admits **measurable perfect matching**.

< □ > < □ > < □ > < □ >

Circuits	
00000	

nproving a fractional perfect matching 000 Random small distortions

A further slightly more general version

Given a function $f:V(G) \to \mathbb{Z}$, a fractional perfect f-matching in a graph G is a function $\varphi: E(G) \to [0,1]$ such that

$$\sum_{y \in N_G(x)} \varphi(y) = f(x)$$

for every $x \in V(G)$.

Marcin Sabok Hyperfinite graphings McGill University

・ロン ・日 ・ ・ ヨン・

Improving		perfect	

A further slightly more general version

Given a function $f:V(G)\to\mathbb{Z}$, a fractional perfect f-matching in a graph G is a function $\varphi:E(G)\to[0,1]$ such that

$$\sum_{y \in N_G(x)} \varphi(y) = f(x)$$

for every $x \in V(G)$.

Theorem (BKS)

Given a measurable function $f: V \to \mathbb{Z}$ If a bipartite hyperfinite one-ended graphing admits a **measurable fractional perfect** f-matching which is everywhere positive and bounded by c, then it admits an integer-valued measurable fractional perfect f-matching bounded by c.

イロト イポト イヨト イヨ

Circuits	
00000	

Schreier graphings

Note that any **Schreier graphing of a group is regular** (r-regular when r is the size of the symmetric generating set).

Marcin Sabok Hyperfinite graphings McGill University

Image: A math a math

Circuits	
00000	

Schreier graphings

Note that any Schreier graphing of a group is regular (r-regular when r is the size of the symmetric generating set).

Bernoulli shifts

The $\mbox{Bernoulli shift}$ of a group Γ is the action

 $\Gamma \curvearrowright [0,1]^{\Gamma}$

by shift: $\gamma \cdot x(\delta) = x(\gamma^{-1}\delta).$

Marcin Sabok Hyperfinite graphings McGill University

(日) (同) (日) (日) (日)

Circuits	Improving a	perfect

< □ > < 同 > < Ξ > <</p>

McGill University

Marked groups

By a **marked group** (Γ, S) we mean a finitely generated grop Γ with a fixed set S of generators.

Cayley graphs

From the point of graph theory, a marked group is the same as its **Cayley graph**

Circuits	Improving a	perfec

Marked groups

By a **marked group** (Γ, S) we mean a finitely generated grop Γ with a fixed set S of generators.

Cayley graphs

From the point of graph theory, a marked group is the same as its **Cayley graph**

Bernoulli graphing

Given marked group, we consider the **Schreier graphing of the Bernoulli shift**.

• • • • • • • • • • • • •

Circuits	
00000	

Factor of iid perfect matching

A **factor of iid perfect matching** of a marked group is a measurable perfect matching in the Bernoulli graphing.

Marcin Sabok Hyperfinite graphings McGill University

Image: A math a math

Circuits	Improving a	

Factor of iid perfect matching

A **factor of iid perfect matching** of a marked group is a measurable perfect matching in the Bernoulli graphing.

Equivalently, a factor of iid perfect matching of a Cayley graph G can be defined as a **probability measure on the set of all perfect matchings** on G, which is a **factor of the product measure** on $[0, 1]^{\Gamma}$.

< □ > < 同 > < Ξ > <</p>

Circuits	Improving a fractional perfect matching	Rand

Factor probability measure

Given two actions $\Gamma \curvearrowright (V_1, \nu_1)$ and $\Gamma \curvearrowright (V_2, \nu_2)$ the measure ν_2 is a **factor** of ν_1 is there exists a Γ -invariant

$$f:V_1\to V_2$$

such that ν_2 is the **pushforward of** ν_1 by f.

Marcin Sabok Hyperfinite graphings McGill University

< □ > < 同 > < 回 > < Ξ > < Ξ

Circuits	Improving a	perfect	matching	

Factor probability measure

Given two actions $\Gamma \curvearrowright (V_1, \nu_1)$ and $\Gamma \curvearrowright (V_2, \nu_2)$ the measure ν_2 is a **factor** of ν_1 is there exists a Γ -invariant

 $f: V_1 \to V_2$

such that ν_2 is the **pushforward of** ν_1 by f.

In case of a factor iid of perfect matching on a Cayley graph, we consider the natural action of Γ on the set of perfect matchings by left multiplication.

イロト イボト イヨト イヨ

Circuits	Improving a	a fractional	perfect	

Theorem (Lyons–Nazarov)

For any nonamenable finitely generated group Γ , any bipartite Cayley graph of Γ has a factor of iid perfect matching.

Marcin Sabok Hyperfinite graphings McGill University

・ロト ・日下・ ・ ヨト・

Circuits	Improving a	perfect	

Theorem (Lyons–Nazarov)

For any nonamenable finitely generated group Γ , any bipartite Cayley graph of Γ has a factor of iid perfect matching.

Question (Lyons-Nazarov)

Which Cayley graphs admit a factor of iid perfect matching?

< □ > < 同 > < Ξ > <</p>

Circuits	Improving	

Corollary (to the perfect matching theorem)

Any bipartite Cayley graph of a **one-ended amenable group** admits a factor of iid perfect matching.

Marcin Sabok Hyperfinite graphings McGill University

イロト イロト イヨト イ

Circuits	Improving a	perfect	

Corollary (to the perfect matching theorem)

Any bipartite Cayley graph of a **one-ended amenable group** admits a factor of iid perfect matching.

Theorem (Bowen-Kun-S.)

A two-ended group admits a factor of iid perfect matching if and only if it is not isomorphic to $\mathbb{Z} \ltimes \Delta$ with Δ finite of odd order.

• • • • • • • • • • • •

Circuits	Improving a	perfect	

Corollary

- if Γ is isomorphic to Z κ Δ with |Δ| odd, then every bipartite Cayley graph of Γ does not admit a factor of iid perfect matching
- if Γ is not isomorphic to Z κ Δ with |Δ| odd, then every bipartite Cayley graph of Γ admits a factor of iid perfect matching.

< □ > < 同 > < 回 > < Ξ > < Ξ

Circuits	Improving a fractional perfect matching	Random small distortions

Perfect matchings have applications also in equidecompositions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Marcin Sabok Hyperfinite graphings McGill University

Circuits	Improving a	perfect	matching

Perfect matchings have applications also in equidecompositions.

Given an action $\Gamma \curvearrowright X$, two sets $A, B \subseteq X$ are equidecomposable if A can be partitioned as $\bigcup_{i=1}^{n} A_i$ such that B is partitioned as $B = \bigcup_{i=1}^{n} \gamma_i A_i$ for some $\gamma_i \in \Gamma$.

< □ > < 同 > < Ξ > <</p>

Marcin Sabok Hyperfinite graphings

Circuits	Improving a fra
00000	0000

Equidecompositions

The existence of an **equidecomposition** can be restated as an existence of a **perfect matching in a certain bipartite graphing**.

Marcin Sabok Hyperfinite graphings McGill University

Image: A math a math

Improving a	a fractional	perf

< □ > < 同 > < Ξ > <</p>

McGill University

Equidecompositions

The existence of an **equidecomposition** can be restated as an existence of a **perfect matching in a certain bipartite graphing**.

Assuming the sets A and B are disjoint, A and B are equidecomposable using elements from a finite generating subset $S\subseteq \Gamma$

if and only if

the bipartite Schreier graphing induced on $A \cup B$ has a perfect matching.

Circuits	Impro
00000	0000

< □ > < 同 > < Ξ > <</p>

McGill University

Theorem (Laczkovich)

Cicrle squaring is possible, i.e. the unit disc and the unit square on the plane are equidecomposable by translations. The same holds for any $A, B \subseteq \mathbb{R}^n$ of the same positive measure and $\dim_{\text{box}}(\partial A) < n$, $\dim_{\text{box}}(\partial B) < n$

Marcin Sabok Hyperfinite graphings

Circuits	
00000	

Theorem (Laczkovich)

Cicrle squaring is possible, i.e. the unit disc and the unit square on the plane are equidecomposable by translations. The same holds for any $A, B \subseteq \mathbb{R}^n$ of the same positive measure and $\dim_{\text{box}}(\partial A) < n$, $\dim_{\text{box}}(\partial B) < n$

Theorem (Grabowski-Máthé-Pikhurko)

Measurable circle squaring is possible, i.e. the unit disc and the unit square on the plane are equidecomposable by translations, using measurable pieces.

The same holds for any $A, B \subseteq \mathbb{R}^n$ of the same positive measure and $\dim_{\mathrm{box}}(\partial A) < n$, $\dim_{\mathrm{box}}(\partial B) < n$

イロト イポト イヨト イヨ

Corollary (to the perfect matching theorem) Measurable circle squaring is possible.

and, again, the same holds for any $A, B \subseteq \mathbb{R}^n$ of the same positive measure and $\dim_{\text{box}}(\partial A) < n$, $\dim_{\text{box}}(\partial B) < n$

Marcin Sabok Hyperfinite graphings McGill University

Image: A math a math

Corollary (to the perfect matching theorem) Measurable circle squaring is possible.

and, again, the same holds for any $A,B\subseteq \mathbb{R}^n$ of the same positive measure and $\dim_{\mathrm{box}}(\partial A) < n, \ \dim_{\mathrm{box}}(\partial B) < n$

The group used in circle squaring is always \mathbb{Z}^d for $d \gg 1$. The Schreier graphing is thus hyperfinite and one-ended.

< □ > < 同 > < Ξ > <</p>

Cir	
	000

mproving a fractional perfect matching

Random small distortions

Applications

Definition

A subset $A \subseteq \mathbb{R}^d$ is uniformly spread (with density α) if there is a bijection $f: A \to \frac{1}{d/\alpha} \mathbb{Z}^d$ such that $\sup_{x \in A} |f(x) - x| < \infty$.

Marcin Sabok Hyperfinite graphings

Circuits 00000	Improving a fractional perfect matching 0000	Random small distortions	Applications

The action of \mathbb{Z}^d is such that both sets are **uniformly spread**

Marcin Sabok Hyperfinite graphings McGill University

Image: Image:

Circuits	Improving a fractional perfect matching	Random small distortions	Applications
			000000000000000000000000000000000000000

Toast

The bipartite graphing can be approximated by a regular graphing coming from the distance graph on $\frac{1}{\frac{d}{\alpha}\mathbb{Z}}\mathbb{Z}^d \cup (\frac{1}{\frac{d}{\alpha}\mathbb{Z}^d} + (1, \dots, 1))$

Marcin Sabok Hyperfinite graphings McGill University

Circuits	Improving	

Positive fractional perfect matching

From this one can easily construct a measurable fractional perfect matching which is **positive on a one-ended set of edges**.

Corollary

The bipartite restriction of the Schreier graphing to the union of **disjoint copies circle and the square** admits a **measurable perfect matching**.

< 口 > < 同 >

A = > 4

Random small distortions

Balanced orientations

Given a 2r-regular graph G, a **balanced orientation** of G is an assignment of orientations to the edges such that for every vertex x we have

$$\mathsf{n}\text{-}\mathsf{deg}(x) = \mathsf{out}\text{-}\mathsf{deg}(x)$$

Marcin Sabok Hyperfinite graphings McGill University

Circuits	Improv
00000	0000

Factor of iid balanced orientation

A **factor of iid balanced orientation** for a (unimodular) graph is defined as a measurable balanced orientation in a certain graphing.

Marcin Sabok Hyperfinite graphings McGill University

Image: A math a math

Circuits	Improving a	

Factor of iid balanced orientation

A **factor of iid balanced orientation** for a (unimodular) graph is defined as a measurable balanced orientation in a certain graphing.

For Cayley graphs, it is simply a measurable balanced orientation of the Bernoulli shift.

Marcin Sabok Hyperfinite graphings McGill University

< 口 > < 同 >

Cir		
oc	0000	

Theorem (Bencs, Hrušková, Tóth)

Any **non-amenable**, quasi-transitive, unimodular graph with all vertices of even degree has a **factor ofiid balanced orientation**

Marcin Sabok Hyperfinite graphings McGill University

Image: A math a math

Cir		
	000	

< 口 > < 同 >

McGill University

Theorem (Bencs, Hrušková, Tóth)

Any **non-amenable**, quasi-transitive, unimodular graph with all vertices of even degree has a **factor ofiid balanced orientation**

Question (Bencs, Hrušková, Tóth)

Does there exist a vertex-transitive graph that is not quasi-isometric to $\mathbb Z$ and has no factor of iid balanced orientation?

Cir		
oc	000	

Theorem (Bencs, Hrušková, Tóth)

Any **non-amenable**, quasi-transitive, unimodular graph with all vertices of even degree has a **factor ofiid balanced orientation**

Question (Bencs, Hrušková, Tóth)

Does there exist a vertex-transitive graph that is not quasi-isometric to $\mathbb Z$ and has no factor of iid balanced orientation?

The perfect matching theorem can be used to answer this question in the negative.

< □ > < 同 > < Ξ > <</p>

Circuits	Improving		perfect	

Random small distortions

Given a graph 2r-regular graph G consider its **barycentric** subdivision G' and let $f: V(G') \to \mathbb{N}$ be 1 on the new vertices and r on V(G).

Marcin Sabok Hyperfinite graphings McGill University

Circuits	Improving a	perfect	matchin

Random small distortions

Any perfect f-matching in G' gives a balanced orientation:

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへ⊙

Marcin Sabok Hyperfinite graphings McGill University

Fractional perfect f-matching

It is easy to see that G' admits a **positive fractional perfect** f-matching.

Marcin Sabok Hyperfinite graphings

Circuits	Improving a	perfect	matching

Any amenable vertex-transitive graph G which is **not** quasi-isometric to \mathbb{Z} must be **one-ended**.

Marcin Sabok Hyperfinite graphings McGill University

< □ > < 同 > < Ξ > <</p>

Circuits	Improving a	perfect	matchin

< 口 > < 同 >

< ∃ >

McGill University

Any amenable vertex-transitive graph G which is **not** quasi-isometric to \mathbb{Z} must be **one-ended**.

Corollary (to the perfect matching theorem)

Any **amenable one-ended** 2*r***-regular** graph admits a **factor of of iid balanced orientation**.

Any amenable vertex-transitive graph G which is **not** quasi-isometric to \mathbb{Z} must be **one-ended**.

Corollary (to the perfect matching theorem)

Any **amenable one-ended** 2*r***-regular** graph admits a **factor of of iid balanced orientation**.

Corollary

Any vertex-transitive graph that is not quasi-isometric to \mathbb{Z} has a factor of iid balanced orientation.

イロト イロト イヨト イヨ