Hyperfinite graphings, part III

Marcin Sabok

McGill University
Winter School in Abstract Analysis 2022

Theorem (Bowen-Kun-S.)

Any bipartite hyperfinite a.e. one-ended regular graphing admits a measurable perfect matching.

Recall

Recall

Structure of extreme points

If φ is an extreme point of C_{G}, then for a.e. edge $e \in E(G)$ we have

$$
\varphi(e) \in\left\{0, \frac{1}{2}, 1\right\}
$$

and the set of edges on which $\varphi=\frac{1}{2}$ is a disjoint union of lines, which we denote $L(\varphi)$.

Recall

Structure of extreme points

If φ is an extreme point of C_{G}, then for a.e. edge $e \in E(G)$ we have

$$
\varphi(e) \in\left\{0, \frac{1}{2}, 1\right\}
$$

and the set of edges on which $\varphi=\frac{1}{2}$ is a disjoint union of lines, which we denote $L(\varphi)$.

Connected toasts
Any hyperfinite a.e. one-ended regular graphing admits a connected toast.

Lemma

Suppose G is hyperfinite and one-ended and $L \subseteq G$ is a family of disjoint lines of positive measure. For every K there exists are Borel families C_{1}, \ldots, C_{K}, each consisting of pariwise edge-disjoint cycles such that

- each edge in $G \backslash L$ is covered by at most one of $C_{1} \cup \ldots \cup C_{K}$,
- at least half of the edges in L are covered by all
$C_{1} \cap \ldots \cap C_{K}$

Proof

The proof uses a connected toast to inscribe cycles into bigger and bigger elements of the toast.

Claim

Any regular graphing admits a measurable fractional perfect matching τ which is positive on all its edges.

Claim

Any regular graphing admits a measurable fractional perfect matching τ which is positive on all its edges.

Proof

Put

$$
\tau(e)=\frac{1}{d}
$$

where d is the degree of G.

Lemma

Given an extreme point φ of C_{G} such that $\mu(L(\varphi))>0$ there exists an extreme point ψ of C_{G} such that

$$
\mu(L(\psi))<\mu(L(\varphi))
$$

Lemma

Given an extreme point φ of C_{G} such that $\mu(L(\varphi))>0$ there exists an extreme point ψ of C_{G} such that

$$
\mu(L(\psi))<\mu(L(\varphi)) .
$$

Improvement measure
To estimate $\mu(L(\psi))$ for ψ in C_{G} we will use the fact that

$$
\mu(L(\psi))=1-2 \int_{E(G)}\left|\psi(e)-\frac{1}{2}\right| d \mu
$$

Proof of the lemma

Given an extreme point φ of C_{G} such that $\mu(L(\varphi))>0$ we will find an extreme point ψ of C_{G} such that

$$
\int_{E(G)}\left|\varphi(e)-\frac{1}{2}\right| d \mu<\int_{E(G)}\left|\psi(e)-\frac{1}{2}\right| d \mu
$$

Proof of the lemma

Given an extreme point φ of C_{G} such that $\mu(L(\varphi))>0$ we will find an extreme point ψ of C_{G} such that

$$
\int_{E(G)}\left|\varphi(e)-\frac{1}{2}\right| d \mu<\int_{E(G)}\left|\psi(e)-\frac{1}{2}\right| d \mu
$$

Proof

Choose K very big and λ very small and consider

$$
\rho=(1-\lambda) \varphi+\lambda \tau
$$

where $\tau=\frac{1}{d}$ as in the previous claim.

Note that ρ is still a fractional perfect matching such that

$$
0<\rho(e)<1
$$

on every edge. It does not lie on the extreme boundary of C_{G}, and it can be distorted slightly at every edge and still be in C_{G}.

Choose a small $\varepsilon<\lambda$.

Circuits Use the previous lemma to find families of cycles C_{1}, \ldots, C_{K} for $L=L(\varphi)$.

Circuits

Use the previous lemma to find families of cycles C_{1}, \ldots, C_{K} for $L=L(\varphi)$.

Alternating circuits

For each $i \leq K$ consider the function $\zeta_{i}: \bigcup C_{i} \rightarrow\{ \pm \varepsilon\}$ which alternates $\pm \varepsilon$ on the edges of (necessarily even) cycles in C_{i}

Circuits

Use the previous lemma to find families of cycles C_{1}, \ldots, C_{K} for $L=L(\varphi)$.

Alternating circuits

For each $i \leq K$ consider the function $\zeta_{i}: \bigcup C_{i} \rightarrow\{ \pm \varepsilon\}$ which alternates $\pm \varepsilon$ on the edges of (necessarily even) cycles in C_{i}

Random circuits

Consider independent identically distributed (iid) random variables:

$$
Z_{1}(t), Z_{2}(t) \ldots \in\{-1,1\}
$$

(for example for $t \in\{-1,1\}^{\mathbb{N}}$ let $Z_{i}(t)=t(i)$).

Random circuits

Consider independent identically distributed (iid) random variables:

$$
Z_{1}(t), Z_{2}(t) \ldots \in\{-1,1\}
$$

(for example for $t \in\{-1,1\}^{\mathbb{N}}$ let $Z_{i}(t)=t(i)$).

For every t consider the following distorted fractional perfect matching

$$
\rho_{t}=\rho+\sum_{i-1}^{K} Z_{i}(t) \zeta_{i}
$$

Theorem (Berry-Esseen)

If $Y_{1}, Y_{2} \ldots$ are iid with $\mathbb{E} Y_{i}=0$, then

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left|\sum_{i=1}^{k} Y_{i}\right| / \sqrt{k}=\mathbb{E}|N|>0
$$

where N has normal distribution.

Consequence

The latter implies that given K large enough, for an edge $e \in L(\varphi)$ we have

$$
\mathbb{E}_{t}\left|\rho_{t}(e)-\frac{1}{2}\right|=\varepsilon \cdot \Omega(\sqrt{K})
$$

Consequence

The latter implies that given K large enough, for an edge $e \in L(\varphi)$ we have

$$
\mathbb{E}_{t}\left|\rho_{t}(e)-\frac{1}{2}\right|=\varepsilon \cdot \Omega(\sqrt{K})
$$

On the other hand, for an edge $e \in G \backslash L(\varphi)$ we have $\varphi(e) \in\{0,1\}$ and the distortion $\left|\rho_{t}(e)-\varphi(e)\right|$ is small

$$
\left|\rho_{t}(e)-\frac{1}{2}\right|>\frac{1}{2}-2 \lambda
$$

Expected distortion

By Fubini's theorem, we get that in expected value:

$$
\int_{E(G)}\left|\varphi(e)-\frac{1}{2}\right| d \mu<\mathbb{E}_{t} \int_{E(G)}\left|\rho_{\mathbf{t}}(e)-\frac{1}{2}\right| d \mu .
$$

Expected distortion

By Fubini's theorem, we get that in expected value:

$$
\int_{E(G)}\left|\varphi(e)-\frac{1}{2}\right| d \mu<\mathbb{E}_{t} \int_{E(G)}\left|\rho_{\mathbf{t}}(e)-\frac{1}{2}\right| d \mu .
$$

Find a witness
Since this is a convex condition, we can find t_{0} such that

$$
\int_{E(G)}\left|\varphi(e)-\frac{1}{2}\right| d \mu<\int_{E(G)}\left|\rho_{\mathbf{t}_{\mathbf{0}}}(e)-\frac{1}{2}\right| d \mu .
$$

Theorem (Choquet-Bishop-de Leeuw)

Each element of a compact convex set is a barycenter of a probability measure supported by the set of extreme points.

Applying this to $\rho_{t_{0}}$, we can find an extreme point ψ which satisfies the same property as $\rho_{t_{0}}$, i.e.

$$
\int_{E(G)}\left|\varphi(e)-\frac{1}{2}\right| d \mu<\int_{E(G)}\left|\psi(e)-\frac{1}{2}\right| d \mu
$$

Applying this to $\rho_{t_{0}}$, we can find an extreme point ψ which satisfies the same property as $\rho_{t_{0}}$, i.e.

$$
\int_{E(G)}\left|\varphi(e)-\frac{1}{2}\right| d \mu<\int_{E(G)}\left|\psi(e)-\frac{1}{2}\right| d \mu
$$

This implies that $\mu(L(\psi))<\mu(L(\varphi))$ and ends the proof of the lemma.

Limit construction

To get a perfect matching, we apply the above lemma a countable number of times.

Limit construction

To get a perfect matching, we apply the above lemma a countable number of times.

For countable ordinals α we construct extreme points φ_{α} of the set of fractional perfect matchings such that

$$
\mu\left(L\left(\varphi_{\alpha}\right)\right) \quad \text { decrease }
$$

and the sequence is a.e. convergent

Limit construction

To get a perfect matching, we apply the above lemma a countable number of times.

For countable ordinals α we construct extreme points φ_{α} of the set of fractional perfect matchings such that

$$
\mu\left(L\left(\varphi_{\alpha}\right)\right) \quad \text { decrease }
$$

and the sequence is a.e. convergent

After countably many times we get $\mu\left(L\left(\varphi_{\alpha}\right)\right)=0$ and φ_{α} is then a measurable perfect matching.

More general version
The proof does not use regularity in an essential way and also proves the following slightly more general version.

More general version

The proof does not use regularity in an essential way and also proves the following slightly more general version.

Therem (BKS)
If a bipartite hyperfinite one-ended graphing admits a measurable fractional perfect matching which is everywhere positive, then it admits measurable perfect matching.

A further slightly more general version

Given a function $f: V(G) \rightarrow \mathbb{Z}$, a fractional perfect f-matching in a graph G is a function $\varphi: E(G) \rightarrow[0,1]$ such that

$$
\sum_{y \in N_{G}(x)} \varphi(y)=f(x)
$$

for every $x \in V(G)$.

A further slightly more general version

Given a function $f: V(G) \rightarrow \mathbb{Z}$, a fractional perfect f-matching in a graph G is a function $\varphi: E(G) \rightarrow[0,1]$ such that

$$
\sum_{y \in N_{G}(x)} \varphi(y)=f(x)
$$

for every $x \in V(G)$.
Theorem (BKS)
Given a measurable function $f: V \rightarrow \mathbb{Z}$ If a bipartite hyperfinite one-ended graphing admits a measurable fractional perfect f-matching which is everywhere positive and bounded by c, then it admits an integer-valued measurable fractional perfect f-matching bounded by c.

Schreier graphings
 Note that any Schreier graphing of a group is regular (r-regular when r is the size of the symmetric generating set).

Schreier graphings

Note that any Schreier graphing of a group is regular (r-regular when r is the size of the symmetric generating set).

Bernoulli shifts
The Bernoulli shift of a group Γ is the action

$$
\Gamma \curvearrowright[0,1]^{\Gamma}
$$

by shift: $\gamma \cdot x(\delta)=x\left(\gamma^{-1} \delta\right)$.

Marked groups

By a marked group (Γ, S) we mean a finitely generated grop Γ with a fixed set S of generators.

Cayley graphs

From the point of graph theory, a marked group is the same as its
Cayley graph

Marked groups

By a marked group (Γ, S) we mean a finitely generated grop Γ with a fixed set S of generators.

Cayley graphs

From the point of graph theory, a marked group is the same as its
Cayley graph
Bernoulli graphing
Given marked group, we consider the Schreier graphing of the Bernoulli shift.

Factor of iid perfect matching
A factor of iid perfect matching of a marked group is a measurable perfect matching in the Bernoulli graphing.

Factor of iid perfect matching
A factor of iid perfect matching of a marked group is a measurable perfect matching in the Bernoulli graphing.

Equivalently, a factor of iid perfect matching of a Cayley graph G can be defined as a probability measure on the set of all perfect matchings on G, which is a factor of the product measure on $[0,1]^{\Gamma}$.

Factor probability measure

Given two actions $\Gamma \curvearrowright\left(V_{1}, \nu_{1}\right)$ and $\Gamma \curvearrowright\left(V_{2}, \nu_{2}\right)$ the measure ν_{2} is a factor of ν_{1} is there exists a Γ-invariant

$$
f: V_{1} \rightarrow V_{2}
$$

such that ν_{2} is the pushforward of ν_{1} by f.

Factor probability measure

Given two actions $\Gamma \curvearrowright\left(V_{1}, \nu_{1}\right)$ and $\Gamma \curvearrowright\left(V_{2}, \nu_{2}\right)$ the measure ν_{2} is a factor of ν_{1} is there exists a Γ-invariant

$$
f: V_{1} \rightarrow V_{2}
$$

such that ν_{2} is the pushforward of ν_{1} by f.

In case of a factor iid of perfect matching on a Cayley graph, we consider the natural action of Γ on the set of perfect matchings by left multiplication.

Theorem (Lyons-Nazarov)
For any nonamenable finitely generated group Γ, any bipartite Cayley graph of Γ has a factor of iid perfect matching.

Theorem (Lyons-Nazarov)
For any nonamenable finitely generated group Γ, any bipartite
Cayley graph of Γ has a factor of iid perfect matching.
Question (Lyons-Nazarov)
Which Cayley graphs admit a factor of iid perfect matching?

Corollary (to the perfect matching theorem)

Any bipartite Cayley graph of a one-ended amenable group admits a factor of iid perfect matching.

Corollary (to the perfect matching theorem)

Any bipartite Cayley graph of a one-ended amenable group admits a factor of iid perfect matching.

Theorem (Bowen-Kun-S.)
A two-ended group admits a factor of iid perfect matching if and only if it is not isomorphic to $\mathbb{Z} \ltimes \Delta$ with Δ finite of odd order.

Corollary

- if Γ is isomorphic to $\mathbb{Z} \ltimes \Delta$ with $|\Delta|$ odd, then every bipartite Cayley graph of Γ does not admit a factor of iid perfect matching
- if Γ is not isomorphic to $\mathbb{Z} \ltimes \Delta$ with $|\Delta|$ odd, then every bipartite Cayley graph of Γ admits a factor of iid perfect matching.

Perfect matchings have applications also in equidecompositions.

Perfect matchings have applications also in equidecompositions.

Given an action $\Gamma \curvearrowright X$, two sets $A, B \subseteq X$ are equidecomposable if A can be partitioned as $\bigcup_{i=1}^{n} A_{i}$ such that B is partitioned as $B=\bigcup_{i=1}^{n} \gamma_{i} A_{i}$ for some $\gamma_{i} \in \Gamma$.

Equidecompositions

The existence of an equidecomposition can be restated as an existence of a perfect matching in a certain bipartite graphing.

Equidecompositions

The existence of an equidecomposition can be restated as an existence of a perfect matching in a certain bipartite graphing.

Assuming the sets A and B are disjoint, A and B are equidecomposable using elements from a finite generating subset $S \subseteq \Gamma$
if and only if
the bipartite Schreier graphing induced on $A \cup B$ has a perfect matching.

Theorem (Laczkovich)

Cicrle squaring is possible, i.e. the unit disc and the unit square on the plane are equidecomposable by translations.
The same holds for any $A, B \subseteq \mathbb{R}^{n}$ of the same positive measure and $\operatorname{dim}_{\text {box }}(\partial A)<n, \operatorname{dim}_{\text {box }}(\partial B)<n$

Theorem (Laczkovich)

Cicrle squaring is possible, i.e. the unit disc and the unit square on the plane are equidecomposable by translations.
The same holds for any $A, B \subseteq \mathbb{R}^{n}$ of the same positive measure and $\operatorname{dim}_{\text {box }}(\partial A)<n, \operatorname{dim}_{\text {box }}(\partial B)<n$

Theorem (Grabowski-Máthé-Pikhurko)

Measurable circle squaring is possible, i.e. the unit disc and the unit square on the plane are equidecomposable by translations, using measurable pieces.
The same holds for any $A, B \subseteq \mathbb{R}^{n}$ of the same positive measure and $\operatorname{dim}_{\text {box }}(\partial A)<n, \operatorname{dim}_{\text {box }}(\partial B)<n$

Corollary (to the perfect matching theorem)

Measurable circle squaring is possible.

and, again, the same holds for any $A, B \subseteq \mathbb{R}^{n}$ of the same positive measure and $\operatorname{dim}_{\text {box }}(\partial A)<n, \operatorname{dim}_{\text {box }}(\partial B)<n$

Corollary (to the perfect matching theorem)

Measurable circle squaring is possible.

and, again, the same holds for any $A, B \subseteq \mathbb{R}^{n}$ of the same positive measure and $\operatorname{dim}_{\text {box }}(\partial A)<n, \operatorname{dim}_{\text {box }}(\partial B)<n$

The group used in circle squaring is always \mathbb{Z}^{d} for $d \gg 1$. The Schreier graphing is thus hyperfinite and one-ended.

Definition

A subset $A \subseteq \mathbb{R}^{d}$ is uniformly spread (with density α) if there is a bijection $f: A \rightarrow \frac{1}{\sqrt[d]{\alpha}} \mathbb{Z}^{d}$ such that $\sup _{x \in A}|f(x)-x|<\infty$.

The action of \mathbb{Z}^{d} is such that both sets are uniformly spread

Toast

The bipartite graphing can be approximated by a regular graphing coming from the distance graph on $\frac{1}{\sqrt[d]{\alpha}} \mathbb{Z}^{d} \cup\left(\frac{1}{\sqrt[d]{\alpha}} \mathbb{Z}^{d}+(1, \ldots, 1)\right)$

Positive fractional perfect matching

From this one can easily construct a measurable fractional perfect matching which is positive on a one-ended set of edges.

Corollary
The bipartite restriction of the Schreier graphing to the union of disjoint copies circle and the square admits a measurable perfect matching.

Balanced orientations

Given a $2 r$-regular graph G, a balanced orientation of G is an assignment of orientations to the edges such that for every vertex x we have

$$
\operatorname{in}-\operatorname{deg}(x)=\text { out-deg }(x)
$$

Factor of iid balanced orientation
A factor of iid balanced orientation for a (unimodular) graph is defined as a measurable balanced orientation in a certain graphing.

Factor of iid balanced orientation

A factor of iid balanced orientation for a (unimodular) graph is defined as a measurable balanced orientation in a certain graphing.

For Cayley graphs, it is simply a measurable balanced orientation of the Bernoulli shift.

Theorem (Bencs, Hrušková, Tóth)

Any non-amenable, quasi-transitive, unimodular graph with all vertices of even degree has a factor ofiid balanced orientation

Theorem (Bencs, Hrušková, Tóth)

Any non-amenable, quasi-transitive, unimodular graph with all vertices of even degree has a factor ofiid balanced orientation

Question (Bencs, Hrušková, Tóth)

Does there exist a vertex-transitive graph that is not quasi-isometric to \mathbb{Z} and has no factor of iid balanced orientation?

Theorem (Bencs, Hrušková, Tóth)

Any non-amenable, quasi-transitive, unimodular graph with all vertices of even degree has a factor ofiid balanced orientation

Question (Bencs, Hrušková, Tóth)

Does there exist a vertex-transitive graph that is not quasi-isometric to \mathbb{Z} and has no factor of iid balanced orientation?

The perfect matching theorem can be used to answer this question in the negative.

Given a graph $2 r$-regular graph G consider its barycentric subdivision G^{\prime} and let $f: V\left(G^{\prime}\right) \rightarrow \mathbb{N}$ be 1 on the new vertices and r on $V(G)$.

Any perfect f-matching in G^{\prime} gives a balanced orientation:

Fractional perfect f-matching
It is easy to see that G^{\prime} admits a positive fractional perfect f-matching.

Any amenable vertex-transitive graph G which is not quasi-isometric to \mathbb{Z} must be one-ended.

Any amenable vertex-transitive graph G which is not quasi-isometric to \mathbb{Z} must be one-ended.

Corollary (to the perfect matching theorem)
Any amenable one-ended $2 r$-regular graph admits a factor of of iid balanced orientation.

Any amenable vertex-transitive graph G which is not quasi-isometric to \mathbb{Z} must be one-ended.

Corollary (to the perfect matching theorem)
Any amenable one-ended $2 r$-regular graph admits a factor of of iid balanced orientation.

Corollary
Any vertex-transitive graph that is not quasi-isometric to \mathbb{Z} has a factor of iid balanced orientation.

